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AWARDSABSTRACT

The invention relates to a multistage scheme for estimating the
parameters of a received carrier signal, such as a carrier signal phase
modulated by unknown data experiencing very high Doppler, Doppler rate,
etc., that arises, for example, in the case of a Global Positioning System
(GPS) where the signal parameters are directly related to the position,
velocity, acceleration and jerk of the GPSreceiver relative to three or
four satellites in the system.

FIG. I illustrates a block diagram of a prior-art system for signal
parameters estimation by differential least squares (DLS) algorithm, while
FIG. 2(a) illustrates a block diagram for signal parameters estimation by
least square (LS) algorithm with model noise colored, and FIG. 2(b) illus-
trates a conceptual block diagram for signal parameters estimation by least
square (LS) algorithm with prewhitened noise FIG. 2(e) illustrates a
block diagram for signal parameters estimation by least square in an ap-
proximate realizable equivalent of FIG. 2(b). FIG. ](a) illustrates a
generalized single-stage estimator used in the first stage of the present
invention, and FIG. 3(b) illustrates a functional block model for a more
compact representation of the generalized single-stage estimator shown in
FIG. 3(a). FIG. 3(0) illustrates a functional block model for subsequent
stages of a multistage estimator shown in FIG. 4. FIG. 5 illustrates in
graphs a, b and o, a high dynamic trajectory used in simulated analysis of
tracking performance of a multistage estimator shown in FIG. 4 where n=2.

Respective FIGs. 6 through 15 are graphs of: the probability of
losing frequency lock vs CNRfor a DLS algorithm in the absence of data
modulation; RMSfrequency estimation error vs CNRfor a DLS algorithm in
the absence of data modulation; the probability of losing frequency lock vs
CNRfor a DLSalgorithm in the presence of data modulation; RMSfrequency
estimation error vs. CNRfor a DLSalgorithm in the presence of data modu-
lation; the probability of losing frequency lock vs CNR for a DLS-EKF
algorithm in the absenceof data modulation; RMSfrequency estimation error
vs CNRfor a DLS-EKFalgorithm in the absenceof data modulation; modulo 2>
RMSphase error vs CNRfor a DLS-EKFalgorithm in the absence of data
modulation; the probability of losing frequency lock vs CNRfor a DLS-EKF
algorithm in the presence of data modulation; RMSfrequency estimation
error vs CNRfor a DLS-EKFalgorithm in the presence of data modulation;
and RMSpseudo range estimation error vs CNRfor a DLS-EKFalgorithm (with
and without data modulation).

In a two-stage embodimentof the more general multistage scheme,
the first stage (selected to be a modified least squares algorithm shown in
FIG. 3a) operates as a coarse estimator resulting in higher rms estimation
errors but with a relatively small probability of the frequency estimation
error exceeding one-half of the sampling frequency. It provides relatively
coarse estimates of the frequency and its derivatives. The second stage of
the estimator (selected to be an extended Kalman filter) operates on the
error signal available from the first stage refining the overall estimates
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MULTISTAGE ESTIMATION OF RECEIVED
CARRIER SISAL PARAHETERS UNDER VERY

HIGH DYNAMIC CONDITIONS OF THE RECEIVER

Origin or the Invention

The invention described herein was made in the perform-

ance of work under a NASA contract, and is subject to the

provisions of Public Law 96-517 (35 USC 202) in which the

Contractor has elected not to retain title.

Technical Field

The invention relates to a multistage scheme for esti-

mating the parameters of a received carrier signal, such as a

lO carrier signal phase modulated by unknown data experiencing

very high Doppler, Doppler rate, etc., that arises, for exam-

ple, in the case of a Global Positioning System (GPS) where

the signal parameters are directly related to the position,

velocity, acceleration and jerk of the GPS receiver relative

15 to three or four satellites in the system.

Background Art

The problem of estimating the parameters of a received

quasi-sinusoidal signal in the presence of noise occurs in

20 diverse scientific and engineering disciplines. The signal

parameters of interest are usually the phase, frequency and

frequency derivatives which are varying with time. The esti-

mation problem becomes considerably more difficult if the

received carrier is modulated by unknown data while simultane-

25 ously experiencing very high Doppler and Doppler rate. As

just noted, situations occur in the cases of Global Position-

ing System (GPS) receivers, but may also occur in NASA deep

space communication links under high spacecraft dynalnics.

In a paper by W.J. Hurd, J.I. Statman and V.A. Viln-

30 rotter titled "High Dynamic GPS Receiver Using Maxim[_0 Likeli-



of the phase along with a more refined estimate of frequency as well and in
the process also reduces the numberof cycle slips.

The novelty of the invention resides in using a first stage for
coarse estimation in cascade with a second stage which is then subject to
significantly less dynamic changes in its signal input, thereby accommodat-
ing higher dynamics in the signal received due to high dynamics in the
motion of the receiver platform.
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hood Estimation and Frequency Tracking," IEEE Trans., Vol.

AES-23, No. 4, pp. 425-437, July 1987, an estimator scheme is

proposed and analyzed for the GPS system based on the maximum

likelihood estimation (MLE) of code delay and Doppler fre-

5 quency over a single data bit period. This scheme estimates

Doppler frequency (assumed constant over successive intervals

of bit periods) and then determines frequency and frequency

rate by a Kalman filter tracking Doppler. The scheme does not

involve carrier phase estimation. For the dynamic trajec-

i0 tories simulated in the paper by W.J. Hurd, et al., the

approximate MLE performance exhibited a threshold of about 30

dB-Hz in terms of the received carrier power-to-noise power

spectral density ratio (CNR), below which rapid performance

deterioration occurred.

15 For GPS applications, an alternative scheme has been

proposed by C.E. Hoefener and L. Wells in a paper tltled

"Utilizing GPS for ultra-High Dynamic Vehicle Tracking in

Space," Proceedings of the International Telemetering Confer-

ence, Las Vegas, pp. 771-773, October 1986, wherein a parallel

20 (nondynamic) link is established between the GPS satellites

and a control ground receiver for the purpose of communicating

the data to the ground receiver. The ground receiver simulta-

neously receives the frequency translated version of the GPS

receiver signal and r_noves the data modulation from this

25 dynamic signal. Such an effectively demodulated signal is then

processed by the estimation algorithm to obtain the desired

signal parameter estimates. There are several estimation

schemes in the literature for this problem. See, for example,

R. Kumar, "Fast Frequency Acquisition via Adaptive Least

30 Squares Algorithm," Proceedings of the International Tele-

metering Conference, Las Vegas, pp. 91-101, October 1986; R.

Kumar, "Fast Frequency Acquisition vla Adaptive Least Squares

Algorithm," IEE Proceedings, Vol. 136, Pt. F, No, 4, pp.

155-160, August 1989; R. Kumar, "Differential Sampling for

35 Fast Frequency Acquisition via Adaptive Extended Least Squares
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Algorithm," Proceedings of the International Telemetering

Conference, San Diego, pp. 191-201, October 1987.

More recently in R. Kumar, "Efficient Detection and

Signal Parameter Estimation with Applications to High Dynamic

5 GPS Receiver," JPL Publication 88-42, National Aeronautics and

Space Administration, Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, California, a scheme for

simultaneous detection and estimation has been proposed. This

scheme is based upon first estimating the received signal's

i0 local (data dependent) parameters over two consecutive bit

periods, followed by the detection of a possible jump in these

parameters. The presence of the detected jump signifies a

data transition which is then removed from the received sig-

nal. This effectively demodulated signal is then processed to

15 provide the estimates of the global (data independent) parame-

ters of the signal related to the position, velocity, etc., of

the receiver. From the simulations, it is seen that the

scheme offers very significant improvement in terms of the

required CNR over the approximate MLE algorithm of W.J. Hurd,

20 et al., (1987) cited above. A key feature of this scheme,

which has a computational complexity of about three times that

of a single extended Kalman filter, is that to a certain

extent the data detection is independent of the acquisition of

the phase or frequency of the received carrier signal in

25 contrast to the conventional decision-directed phase-locked

loop receivers in which the data detector is an integral part

of the loop and depends upon the acquisition of the carrier

phase and/or frequency. Thus, under low CNR and/or high

dynamic conditions, the loop may not acquire lock or frequent-

30 ly lose it during tracking.

An object of this invention is to provide an efficient

method for estimating the parameters of a received carrier

signal without undue computational complexity utilizing a

multistage scheme.
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Statement of the lnventlon

In accordance with the present invention, the first

stage of a multistage estimator operates as a coarse estimator

resulting in higher rms estimation errors but with a rela-

5 tively small probability of the frequency estimation error

exceeding one half of the sampling frequency (an event termed

cycle slip). The second stage of the multistage estimator

operates on the error signal available from the first stage,

refining the overall estimates, and in the process reducing

i0 the number of cycle slips.

The first stage algorithm is preferably selected to be

a modified least squares algorithm referred to as differential

least squares (DLS) algorithm. This estimation stage provides

relatively coarse estimates of the received signal frequency

15 and its derivatives. The second stage algorithm is preferably

a third-order extended Kalman filter (EKF) which yield:_ a more

refined estimate of frequency as well as an estimate of the

signal phase.

A major advantage of the proposed multistage e_timator

20 is a reduction in the threshold on received carrier power-to-

noise power spectral density ration (CNR) as compared to the

threshold achievable by either of the two cascaded e_timator

stages alone. In fact, it appears from simulations that for

the case of an unmodulated carrier, the proposed scheme

25 achieves the same threshold as for an almost exact and compu-

tationally intensive implementation of the maximum likelihood

estimator (MLE). For the case of a data modulated carrier,

the proposed scheme provides an improvement of about 6 dB in

terms of CNR compared to an earlier approximate MLE scheme

30 reported by W.J. Hurd, et al., (1987) cited above. The over-

all complexity of the algorithm is about two times the com-

plexity of a third-order Kalman filter or a single

fourth-order extended Kalman filter.

The novel features that are considered characteristic

35 of this invention are set forth with particularity in the
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appended claims. The invention will best be understood from

the following description when read in connection with the
accompanyingdrawings.

5 Brief Description of the Drawings

FIG. ! illustrates a block diagram of a prior-art

system for signal parameters estimation by differential least

squares (DLS) algorithm.

FIG. 2(a) illustrates a block diagram for sigr_al pa-

l0 rameters estimation by least square (LS) algorithm with model

noise colored.

FIG. 2(b) illustrates a conceptual block diagram for

signal parameters estimation by least square (LS) algorithm

with prewhitened noise .

15 FIG. 2(c) illustrates a block diagram for sigr_al pa-

rameters estimation by least square in an approximate realiz-

able equivalent of FIG. 2(b).

FIG. 3(a} illustrates a generalized single-stage estim-

ator used in the first stage of the present invention.

20 FIG. ]{b) illustrates a functional block model for a

more compact representation of the generalized single-stage

estimator shown in FIG. 3(a).

FIG. 3(c) illustrates a functional block model for

subsequent stages of a multistage estimator.

25 FIG. 4 illustrates a multistage estimator for the

process ei(t).

FIG. 5 illustrates in graphs a, b and cp a high dynamic

trajectory used in simulated analysis of tracking performance

of a multistage estimator shown in FIG. 4 where n--2.

30 FIG. 6 is a graph of the probability of losing fre-

quency lock vs CNR for a DLS algorithm in the absence of data

modulation.

FIG. 7 is a graph of RMS frequency estimation error vs

CNR for a DLS algorithm in the absence of data modulation.
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FIG. 8 is a graph of the probability of losing fre-

quency lock vs CNRfor a DLSalgorithm in the presence of data
modulat i on.

FIG. 9 is a graph of RMSfrequency estimation error vs.

5 CNRfor a DLSalgorithm in the presence of data modulation.

FIG. 10 is a graph of the probability of losing fre-
quency lock vs CNRfor a DLS-EKFalgorithm in the absence of
data modulation.

FIG. 11 is a graph of RMSfrequency estimation error vs

i0 CNRfor a DLS-EKFalgorithm in the absence of data modulation.

FIG. 12 is a graph of modulo 2_ RMS phase error vs CNR

for a DLS-EKF algorithm in the absence of data modulation.

FIG. 13 is a graph of the probability of losing fre-

quency lock vs CNR for a DLS-EKF algorithm in the pres[_nce of

15 data modulation.

FIG. III is a graph of RMS frequency estimation error vs

CNR for a DLS-EKF algorithm in the presence of data l_odula-

tion.

FIG. 15 is a graph of RMS pseudo range estimatiorJ error

20 vs CNR for a DLS-EKF algorithm (with and without data modula-

tion).

25

3O

Detailed Description of the Invention

I. Introduction

An alternative scheme for the estimation of the signal

parameters will now be described for both the case of unmodu-

lated carrier signal and the case of a carrier signal phase

modulated by unknown data. The proposed scheme is somewhat

simpler than that of R. Kumar, described in the aforesaid JPL

Publication 88-42, in that it is not essential to explicitly

detect the data modulation for the second case. Basically,

the new algorithm involves an appropriate modification of the

DLS scheme of R. Kumar in the aforesaid paper titled "Differ-

ential Sampling for Fast Frequency Acquisition via Adaptive
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Extended Least Squares Algorithm" so as to apply the algorithm
to the case of unknowndata modulation.

As discussed in that paper, if a DLS technique is

applied with the Nyquist sampling of the received signal, a

5 loss in performance is expected compared to the optimum

achievable performance. Consequently, oversampling and cyclic
sampling was proposed to avoid such a loss. In the present

invention, sampling at Nyquist rate is proposed with an alter-

native method for estimating parameters in order to keep the

i0 overall performance close to optimum. The new scheme proposed

consists of a multistage procedure wherein the parameters of

the signal are estimated in more than one stage. First, coarse

parameters are estimated by an algorithm like DLSwhich has a
low threshold on CNRbut with possibly higher rms estimation

15 errors. Then an error signal whose parameters are equal to

the difference between the true parameters and the coarse

estimates is processed by another algorithm to estimate these

error signal parameters. Since the error signal involves much

smaller dynamics, the second algorithm can have smaller band-

20 width resulting in a smaller estimation error. In principle,

this procedure of processing an error signal in another stage

can be repeated any number of times with successive stages

having progressively lower bandwidths.

The example described below of a multistage estimator

25 is confined to two stages of recursion and applies a modified
least square algorithm for the first stage and a third-order

extended Kalmanfilter algorithm for the second stage. It was

expected that the overall algorithm would have both smaller
threshold and smaller estimation errors compared to either

30 algorithm operating by itself. Indeed, this is borne out by
simulations presented hereinafter. Thus, for the case of no
data modulation, the threshold on SNRis about 1.5 d_ lower

than the third-order EKF, and the estimation errors _'e only

marginally higher than for the thlrd-order EKF alone. The

35 threshold achieved is in fact the same as achieved for a
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nearly exact implementation of the maximumlikelihood estim-

ator (MLE). It is also noted that the threshold achieved by

the present invention is about 3 dB lower than conventional
cross product AFC (CPAFC)loops and phase-locked loop_ com-

5 pared by V.A. Vilnrotter, S. Hinedi and R. Kumar, "A Compari-

son of Frequency Estimation Techniques for High Dynamic
Trajectories," JPL 88-19, Jet Propulsion Laboratory, Califor-

nia Institute of Technology, Pasadena,California, whereas the

rms error is less than one half of that obtained by CPAFC. In

i0 the simulation described hereinafter, the rms error is margin-

ally higher than for a third-order EKFdue to the nonoptimal

sampling used in the DLSalgorithm.
For the case of data modulation, results of the simula-

tions are compared with those reported by Hurd, et al.,

15 (1987), where analysis and simulations are presented on the
performance of Fast Fourier Transform (FFT) based MLE algo-

rithm. In that report, the trajectories of the GPSsignals

have somewhatless severe dynamics compared to those consid-
ered in this presentation. In terms of threshold on CNI_,the

20 proposed schemeof this presentation exhibits a threshold of

24 db-Hz comparedto about 30 dB-Hz reported by Hurd, _:t al.,

thus providing an improvement of about 6 dB. In terms of the

rms frequency estimation errors at a 30 db-Hz CNR, the scheme
of Hurd, et al., provides a rms range rate error of about 6

25 m/s comparedto an error of less than 2 m/s achieved _n this

simulation. There is also a very significant improvement in
terms of the rms position estimation error. At about 30

dB-Hz, an rms error of I meter is reported by Hurd, et al.,

compared to about 0.25 meter obtained by the proposed algo-
30 rithm. It may also be remarked that in the previous schemeof

Hurd, et al., pseudo-random codes with rate 10.23 MHz are

needed for the purpose of range measurements, thus requiring a

zero-crossing channel bandwidth in excess of 20 MHz. The

present invention on the other hand, extracts the range infor-
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mation from the carrier signal itself and thus needs a band-

width equal to only a fraction of I MHz.

I0

15

2. Receiver Configuration

Consider the problem of estimating the high dynamic

phase process Oi(t) of the desired signal si(t) observed in

the presence of an additive narrow-band noise process v[(t) as

ri(t) = si(t)+vi(t)

= ASin(mct+Oi(t)+_D(t))+vi(t), (i)

where wc is the received signal carrier frequency in the

absence of any dynamics and D(t) is a binary digital waveform.

In the case of a GPS receiver, the dynamic phase proces;J Oi(t)

arises from the receiver dynamics and, over a sufficiently

small estimation period,

I 3
@i(t) = Oio+_io t +YIot2+6io t (2)

20 for some unknown parameter vector @Io = [8Io mIo YIo 6Io]" In

a somewhat simpler version of the problem, the data modulation

D(t) is either absent or is assumed known and thus can be

eliminated from Equation (I). Both of these cases will be

treated in some detail.

25 In the first stage, the present invention estimates the

parameters related to the frequency and its derivatives using

the DLS algorithm. For this purpose, the received signal

si(t) is quadrature demodulated in a conventional input sec-

tion |0 comprised of mixers II and 12, a _/2 phase delay

30 element 13 which shifts the phase of a signal SL(t) from a

voltage-controlled oscillator (VCO) 111 and lowpass filters 15

and 16 as shown in FIG. I. The VCO frequency update rate of

I/T s indicated by a block 17 is controlled by a signal B(N)

produced by a differential least square (DLS) algorithm indi-

35 cated by a block 18 the function of which will be described
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i0

below. Assumingthat the input to the VCOis a signal OK(t)
which is an appropriate quadratic function of time, t, result-

ing in the following VCOoutput signal sL(t)

sL(t) = 2Cos(wct+OL(t))

+ 2+ 3OL(t) = eLo+wLot 7Lot 6Lo t (3)

for some constant vector SLo : [eLo _Lo 7Lo 6Lo]" the sam-

pied version of the in-phase and quadrature components of the

demodulated signal are given by

15

2O

25

30

y(k) = ASin(e(k) + _D(k)) + vi(k)

z(k) --ACos(O(k) + _D(k)) + Vq(k) ;k = 1,2,...,N (4)

where

G(k) = Oi(k) - OL(k) = eo+_okTs+Xo(kTs)2+6o(kTs )3

_o =A ¢Io - _Lo = [go _o 7o 6o]'

and _o is the parameter" vector characterizing the error" signal

to be estimated, with T s denoting the sampling interval. In

Equation (4), vi(k) and Vq(k) represent the sampled in-phase

and quadrature components of the bandpass noise proces3 vi(k).

The parameter vector ¢o is estimated by the differential least

squares (DLS) algorithm of R. Kumar (1988) cited above, as

described in the following section.

3. Differential Least Squares (DLS) Algorithm

Consider first the problem of estimating the unknown

parameters _o' 7o and 6o from the measurement Equation (4) for

the case of no data modulation, i.e., when D(k) = O, and
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expand Sin(e(t)) in a Taylor series around tk_ I = (k-l)T s to
obtain

Sin(6(t)) = Sin (O(k-1))+TO(k-1)Cos(O(k-1))+... (5)

5

l0

15

2O

25

with a similar expansion for Cos (Eb(t)). For small (t-tk_1) ,
the series in Equation (5) may be approximated by the first

two terms and from Equation (4) the following differential

signal model with _k = (k-(I/2))Ts:

Yd(k) A=y(k)_y(k_1)__Ts(mo+2YoTk+36oTk2)Z(k_1)+_i(k)

Zd(k ) A=z(k)-z(k-1)---Ts(wo+2YoTk+36o_2)y(k-1)+_q(k) (6)

where

_i(k ) A__vi(k)_vi(k_1)_Ts(_o+2To_k+36o_2)Vq(k_1)

_i(k) _AVq(k)-Vq(k-1)-Ts(_o+2Yo_k+36o_2)vi(k-1) (7)

The measurc_nentmodel of Equation (6) may be rewritten in the

following standard:

Zd(k) -- H'(k)B+_(K) ;k--1,2 .... N (8)

where

3O

B' = [_o 2¥o 66o]

-J
H'(k) = [-TsY(k-1)

Z_(k) = [Yd(k) Zd(k)]

Ts_kZ(k-1)

-Ts_kY(k-1)

;5'(k) : [Si(k) 5q(k)]

(9)
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lO

15

2O

25

The parameter vector 6 in Equation (8) is now estimated by an

exponential data-weighted least squares algorithm in a recur-

sire or nonrecursive form (Kalman filter). In its nonrecur-

sive form, the estimate of _ obtained on the basis of N

measurements and denoted by B(N) is given by

N N

_(N) = {j_IH(j)H'(j)AN-j}-I{j_= =IH(J)Zd(j)AN-J}
(lO)

where k is some appropriate weighting coefficient within

O<A<I. An equivalent recursive form of Equation (10) is the

following algorithm:

^

B(N) --_(k-1)+L(k)_(k)

L(k) _ P(k-1)H(k)E_I+H'(k)P(k-1)H(k)] -I

(11)

p(_() -- {p(_-1)-P(k-1)H(k)[AI+H,(k)P(k-1)H(k)]-IH,(k)p(k-1)}ZA

_(k) = Zd(k)-H'(k)_(k-1) ;k = 1,2,...,N

Note that the matrix to be inverted in Equation (11) is only a

(2x2) matrix. In an alternative but equivalent form, one may

process the scalar measurements Yd(k), Zd(k) sequentially

instead of working with the vector measurement Zd(k). Moreo-

ver, the matrix P(k) of Equation (11) with k=N is the same as

the matrix inverse in Equation (10), i.e.,

3O

35

k

p-1(k) j_IH(j)H'(j)Ak-j:.

Alternatively, the matrix P-1(k) may be written as

k

P-1(k) = _ Ak-j{z2(j)+y2(j)}BjT2; Bj __g
j=1

"I lj 12

_j _2 _3

_j

(12)

(13)
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lO

15

and thus the matrix P(k)H(k) required in the update of 6(k),

and equal to L(k) in Equation (11), may be approximated by

P(k)H(k) z- x(k)Ez(k) -y(k)]

k

jXI k-jBj -1x'(k) = ( )-1)(A2+° )-111 _k t2]'Ts (14)

where

2 E[z2(j)+y2(j)] = A Ov"E[v2]= E[v2] = (i/2)o v ; .2. 2

In Equation (14) the vector x(k) is data independent and thus

could be precomputed for k = 1,2, .... N for computational

simplification of Equation (11). Similarly, in the implemen-

tation of Equation (10), the first matrix may be replaced by

the data independent matrix

N

• .2+ 2,.2
(j_IXN-3Bj)(_ av)i s.

20 3(a). Modified Least Squares Algorithm

If the noise _(k) in the signal model of Equation (8)

were white, then the estimate B(N) obtained from the algorithm

(10) or (11) would approach 0 as N _ =, if one ignor'es the

approximation made in arriving at Equation (8) and A is se-

25 lected equal to I. However, as the noise ((k) in Equation (8)

is colored, there would be considerable bias in the parameter

estimates under low to medium signal-to-noise ratios. To

reduce such a bias or possibly eliminate it, the following

simple modification is proposed. If the instantaneous fre-

2) appearing in30 quency _(T k) at time _k given by (_o+2YoTk*36oTk

Equation (7) is small compared to I/Ts, then the noise vector

_(k) is equal to v(k)-v(k-1) where v (k) A= [vi(k) Vq(k)]'.

This situation is illustrated in FIG. 2(a}.



F89/314 14

To eliminate the bias, the noise _(k) must be whitened
by passing through the transfer function (I-z-I) -I as shownin

A

FIG. 2(b) where BUB denotes an unbiased estimate of B. The

least squares algorithm is, in general, nonlinear arld time-

5 varying. However, if it is assumed that the algorithm in

Equation (11 ) asymptotically approaches a time-i nvari ant

system, then under such an assumption, one may interchange the

least squares algorithm with the transfer function (I-z-I) -I

to arrive at the arrangement of FIG. 2(c). This, of course,

i0 corresponds to post-averaging the least squares estimates,

which is the preferred technique for the present invention.

Such a simple procedure provides very significant improvement

in the estimates B(k) when the signal-to-noise ratio is low.

In the simulations of the next section, the infinite time

15 averaging (I-z-I) -I of FIG. 2(c) is replaced by an exponen-

tially data-weighted averaging to take into account the time

variation of the parameters to be estimated.

2O

3(b). DLS Algorithm in the Data Modulation Case

In this case, the data samples D(k) in the signal model

of Equation (4) take only possible values _+I and the received

signal may equivalently be written as:

y(k) = D(k)ASin(O(k))+vi(k)

25 z(k) _ D(k)ACos(O(k))+Vq(k) ;k=1,2 ..... N (15)

Thus, as may be easily verified over any bit interval Tb,

where D(k) remains constant, the differential signal model of

Equation (6) remains valid irrespective of the value of D(k).

30 The model of Equation (6), however, is not applicable for

those samples which lie on the bit boundaries, i.e., when y(k)

and y(k-1) lie in different bit intervals. A simple m_,difica-

tion of the algorithm to take care of the data modulation case

is to simply discard such differential samples. If the number

35 of samples M over any bit period is fairly large, this would
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incur a negligible loss in the effective signal-to-noise ratio
comparedto the case of no data modulation. In fact, such a

loss is simply equal to 101og10(1-1/M)dB which is 0.45 dB for
M_IO. This is corroborated by the simulations of the next
secti on.

3(c) Estimation of Time-Varying Parameters
In the signal model considered above, it is assumed

that the input signal parameter vector _IO is either a con-
i0 stant or a slowly varying function of time. In practice, this

may be the case only over relatively short intervals of time,

but there may be large variations in _IO over a comparatively
large observation period. To take into account such a varia-

tion and to ensure that the instantaneous difference frequency
15 C(t) A d/dt(O(t)) (the sampled version of O(t) given in Equa-

tion (4)) remains within the low-pass filter-pass band of FIG.

I, the parameter vector _Lo generating the instantaneous fre-

quency of the VCOis updated at regular intervals of T:NTs sec

for some integer N. The parameter vectors _I' _Lo and _o
20 would change their values at intervals of T sec, assuming that

the value of N is selected to be sufficiently small so that

the variation in _I over any T sec interval is small. Denot-

ing by 0Lo(T+),_Lo(T+) , etc., the values of reference _sci_la-
tor parameters just after the update at time T, are:

25

3O

35

8Lo(T+) = OLo(T-)
_Lo(T+) = _Lo(T-)+_o(0/T)+eT_o(0/T)+3T2_o(0/T)

^

YLo(T ÷) = FLo(T-)+3T6o(O/T)
^

6Lo(T+) _ ALo(T-)+_o(0/T) (16)

In Equation (16), OLo(T-), _Lo(T-), etc., represent the oscil-

lator instantaneous phase, frequency, etc., just before the

correction, and the remaining terms on the right hand side

represent the correction made on the basis of the estimation

al gor ithm. Thus,
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5

OLo(T-) = 0Lo(0+)+_Lo(O+)T+YLo(0+)T2+6Lo(0+)T3
_Lo(T-) = _Lo(O+)+2YLo(O+)T+36Lo(O÷)T2

r(T-) = YLo(O+)+3T6Lo(O+)

ALo(T-) = 6Lo(0+) (17)

Note that in Equation (16) there is no correction in the

oscillator phase as the DLS algorithm does not provide the

phase estimate. In Equation (16) 03o(0+/T) denotes the esti-

mate of parameter _o(0+) obtained on the basis of measurements

i0 up to time T. Since there is no step change in the oscillator

phase, the sampled measurements y(N) and z(N) at the demodula-

tor output are the same with or without a correction at the

instance NT s. However, the subsequent measurements y(N+j) and

z(N+j) are now expressed with respect to the new parameter

15 vector _o(T+)=[Bo(T+) _o(T+) Yo(T+) 6o(T+)]' __A_Io(T+)__Lo(T+ )

as in Equation (18) below.

y(N+j) = ASin(O(N+J))+v i(N+j)

z(N+j) = ACos(O(N+J))+Vq(N+j) ;j=1 ..... N

20 O(N+j) = eo(T+)+_o(T+)JTs+_o(T+)(JTs)2+6o(T+)(JTs )2 (18)

25

3O

The last three elements of the vector @o(T+) will be zero if

there is no change in the input signal parameters over the T

sec interval and the estimate of _o(0+) is obtained with zero

estimation error. Thus, the technique is to set the a-prlori

estimate of the vector _o(T ÷) equal to 0 and apply the DLS

algorithm to estimate @o(T+) on the basis of observations

ly(N+j), z(N+j); j=1 .... ,N}. The measurement model is ob-

tained by simply replacing the index k by k+N in

y(k),z(k),_i(k),_q(k) in Equations (6-9) but with _k=(k-I/2)Ts

as before (corresponding to a shift in time reference).

In the estimation of _o(T +) via the recursive algorithm

of Equation (11) with the index k=N+I,...,2N, the "initial"

covariance matrix P(N+I) is obtained as:
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P(N+I) = _FP(N)F'+Q (19)

where

F A I 3

and the matrix Q represents the uncertainty introduced due to

the change in the input process parameters over the interval
i0 of T sec. Specifically, the last diagonal element of Q repre-

sents the variance of the change in the parameter 66 (equal to

the second derivative of frequency and related to the jerk of

the physical trajectory) over the interval T. Th_ above

procedure is then extended in a straightforward manner to the

15 subsequent update intervals. The estimates of input signal
phase and frequency at time instances ZT+ are then simply

given by 8Lo(£T÷) and _Lo(£T+) respectively for £=0,I,2 .....

4. Multistage Estimation

20 Most of the phase and frequency estimation schemesfor

the first stage of a multistage estimate can be represented as

in FIG. 3{a} in which elements commonwith FIG. I are identi-

fied by the same reference numerals. An update algorithm

(represented by a functional block 21) for generating the
25 correction signal for the VCO could be any recursive or

semi-recursive algorithm including an EKF or DLS algorithm,
and the VCOupdate interval may be some integer multiple of

the sampling period Ts. FIG. 3(b) illustrates a functional
block model for the generalized first-stage estimator illus-

30 trated in FIG. 3(a). This functional block model will be used

hereinafter as a symbol to illustrate the first stage in a

multistage estimator shown in FIG. 4 in accordance with the

objective of this invention. Note that O(t), vi(t ) and Vq(t)
01(t),of FIG. 3{a) are respectively equal to vi(t), Vq(t) of
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FIG. 3(b). FIG. 3(c) illustrates a functional block model for

subsequent stages of the multistage estimator of FIG. 4.
An important observation made from F_G. 3(b) is that

along with the estimate Oi(t) of the input phase process

5 6i(t) , there is also available a pair of signals, y!(t) =

1(t) zIASin041(t) + v i , (t) = ACosO(t) + v (t) dependent upon

the estimation error O(t) = BI(t)-OL(t). These error signals

have exactly the same form as the signals at the input to the

estimator. Moreover, the additive noise associated with these

i0 signals has statistics identical with the statistics of the

noise at the input to the estimator. Therefore, this leads to

the interesting possibility of the present invention, namely

estimating the error signals O(t) in a way similar to the

estimation of 0i(t). In fact, the procedure can be repeated

15 any number of times as shown in FIG. 4, although only a two-

stage estimator is described below as an example of the pres-

ent invention. It should also be noted that only the first

estimation stage shown in FIG. 3(a) requires a VCO for down

conversion because the actual input to this stage is at rf

20 frequency _c' whereas subsequent estimator stages generate the

error signals by simple baseband computations. For example, in

the discrete-time version of the estimation procedure, the

signal at the output of estimation stage m may simply be

computed as

25

ym(k) = ym-1(k)Cos($m-1(k-1))-zm-1(k)Sin($m-1(k-1))

(20)

zm (k)=ym-I (k)Sin(0m-1(k-I))+zm-1(k )Cos (om-1(k-I));m=2,3 .... n

30 The refined estimate of the phase process Oi(t) in FIG. 4 at

sampling instance k is then simply given by

^
^

OI(k) = OL(k)+O1(k)+...+On(k ) (21)
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The advantage of such a recursive estimation procedure is that

the overall threshold in terms of the required CNRfor the

multistage estimator can be made much smaller than a single

stage estimator, especially in situations involvirLg high

5 dynamics.

In the prior-art single-stage estimator shown in FIG.

I, the process parameters may be assumed to remain constant

only over short intervals of time due to the high dynamics

involved in a receiver carried, for example, in a high per-

i0 formance aircraft or spacecraft. Thus, the estimator is

forced to use a relatively large noise bandwidth (shorter

averaging period), resulting in large errors in the phase

and/or frequency estimates. If the estimation errors are

outside the region over which the error model (linear) assumed

15 for the estimator remains valid, the estimator is said to be

working below threshold or in the out-of-lock condition. In

this condition, the estimation errors can be several orders of

magnitude higher compared to the operation above threshold.

In the multistage estimator of the present invention,

20 this difficulty can be circumvented by successive reduction of

the dynamics (the estimation errors due to dynamics) at the

output of consecutive estimator stages and by averaging the

signal over progressively longer intervals (and thus progres-

sively reducing the effect of noise) over which the process

25 parameters remain nearly constant. In this multistage estima-

tion structure, none of the individual stages (except the last

one) need necessarily operate above its threshold. For the

convergence of the overall estimator, one only requires that

the estimates are made in the right direction (estimation

30 errors do not exceed the parameters to be estimated in some

average sense).

35

5. Recursive DLS-EKF Algorithm

The following section considers a simple special case

of n_2 for the more general multistage estimator of FIG. 4,
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l0

15

2O

wherein the first stage is as described above with reference

to FIGs. 3a and 3b and the DLS algorithm is as described in

the previous section above. The second stage is an extended
Kalman filter (EKF) as described above with reference to FIG.

3c. As the dynamic variation of the error signal O(k) = O1(k)

of the first stage is much smaller compared to the original

signal O(k) (the frequency variation over any update interval

is muchsmaller), the effective averaging time period for the

second-stage estimator implemented with a Kalmanfilter can be

selected to be higher than for the first stage implemented
with a DLSalgorithm. This is achieved by selecting a smaller

value of the "dynamic noise" covariance matrix Q for the EKF

and/or a higher value for the exponential data weighting

coefficient _ of Equation (9).

5a. ExtendedKalmanFilter (EKF) Algorithm

Referring to FIG. 4, consider the problem of estimating

the unknown error signal parameters mo_, _o_ and 6o_ in the
_th VCOupdate period for any integer _I on the basis of the
set of measurements{y1(k),z1(k)} of Equation (22) below by an

EKF

25

y](k) = ASin(O1(k))+vi](k)

z1(k) = ACos(Ol(k))+v_(k)
01(k) = @o_÷_o_JTs+Yo_(JTs)2+_o_(JTs)3

k = N(£-I)+j;j=I ,2, ...,N ;_--1,2.... (22)

Note that as for the first-stage DLS algorithm the parameter

vector @og = [@og _o_ Yo_ 6o_]' may be different over differ-

30 ent VCO update intervals. For computational simplicity, a

third-order EKF is used in the second stage and the contribu-

tion of the last term in the expression for 01(k) is ignored,

which is appropriate for the GPS trajectories considered here.

Denoting the state and parameter vectors at time k = N(_-I)+j

35 by @_(j) and n_ respectively, i.e., with @(j) = [I jT s
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0.5(JTs)2] ', n_ = [8o_ mo_ 2_o_]" the extended Kalman

filter equations for the update of _ in the second stage, the

estimate of n_, are given by

_g = _(j-1)+Kg(j)vg(j)

Kg(j) = _(j-I)_(j)(X+_'(j)_(j-I)_(j)) -I

_(j) -- {_._(j'I)-_(j-I)_(j)[X+_'(j)_._(j-I)_(j)]-I

_'(j )_(j-1) }/_ (23)

v&(j) = yl(k)Cos(_g(j))-z1(k)Sin(_g(j))
^ ^

@g(j) : _b'(j)qg(j-1) ;k=(_-l)N+j;j=1,2 ..... N;g=1,2 ....

In the Equations (23) above, the initial estimate ti&(0) is

simply taken to be equal to __I(N). This is an appr_opriate

15 choice for the initial estimate in view of the fact that if

the first stage of the DLS estimation algorithm is convergent

then q_ would possess some continuous drift term, i.e., mo_

will have a component linear in time if 7o_" A 0. The "initial

error covariance" matrix _£(0) is simply set equal to some

20 diagonal matrix representing the uncertainty in the difference

parameter q_-n&_ I.

5b. Estimation in the Presence of Data Modulation

In this case one could apply the more sophisticated

25 version of R. Kumar (1988) cited above, wherein an explicit

detection of possible data transitions is followed by the

demodulation of data, thus effectively reducing the problem to

the case of no data modulation considered above, ilowever,

here such a detection is bypassed, and instead a simple modi-

30 fication in the estimation algorithm is proposed that takes

into account the data modulation. If the VCO update interval

T is selected equal to bit period Tb, then the data modulation

represents an additional phase uncertainty at the boundaries

of the update intervals. This is taken into account by adding

35 an appropriate value, say (_/2) 2, to the first diagonal ele-
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i0

15

ment of _(0) and modifying the initial estimate _(0) by _/2,

i.e., _(0) = __I(N)+_/2, for those values of _ that corre-
spond to bit boundaries. Such an algorithm is expected to

result in somewhathigher estimation errors compared to the
more sophisticated schemeof R. Kumar (1988) cited above, but

is muchsimpler in terms of implementation. In the case of a

two-stage estimator (stages I and 2 of FIG. 4), the estimates
of the input signal phase and frequency at time in_tances _T

are given by

O(_T) -- OL((_-I)T+)+_'(N)_(N)
(24)

_(_T) = _L((_-I)T+)+_o_+2_o_. (NTs)
^

where _o_ and Yo_ represent the second and third element

respectively of _(N).

6. Simulations

Simulation results obtained when the algorithm is

applied to the tracking of phase and frequency for high dy-

namic GPS receivers will now be presented. For the purposes

20 of simulation, ass_ne that the pseudo-random code has been

removed from the received signal, and symbol timing has been

acquired. The simulation considers both the case of the data

modulation removed via an auxiliary link and the case of an

unknown data modulation present. For the simulations a sam-

25 pling rate of 500 samples/second is assumed with a high dy-

namic trajectory considered previously in V.A. Vilnrotter, et

al., "A Comparison of Frequency Estimation Techniques for High

Dynamic Trajectories," JPL 88-21, Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, CA, September

30 1988, and reproauced in FIG. 5 where the acceleration and the

jerk (the derivative of acceleration) are measured in units of

g (the gravitational constant equal to 9.8m/s). In the case

when data modulation is present, a BPSK modulation at a rate

of 50 bits/second is assumed.
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5

i0

15

20

25

3O

The parameters of most interest in this application are
the instantaneous phase and frequency of the input signal

ri(t) , which corresponds to the high dynamicGPStrajectory of
FIG. 5. Since the present invention is mainly interested in

the tracking performance of the proposed algorithm, it is

assumedthat the initial trajectory parameters at zero time

are knownas in V. Vilnrotter, et al., Sept. 1988, supra. The

received signal carrier frequency fc = _c/2_ in the signal
model of Equation (I) is taken to be equal to 1.575 GHz. The

GPSreceiver instantaneous pseudo-range R in meters and veloc-

ity vd in m/s are related to the instantaneous phase Ol(t) of
Equation (I) and its derivative _i(t) as

0 c
R -

2_ fc

c c

Vd = fd fc 2_ fc

25

where fd denotes the Doppler in Hz and c is the speed of

light. Denoting by R(£) and fd(£) the estimates for R(£) and

fd(Z) respectively, which denote the range and Doppler of the

input trajectory at the end of the £th update interval, then

the performance measures of the estimation algorithm are given

by the following sample rms values of the estimation errors

Rrms- =A _[R(_)__(&)]2

_=I

LA _[fd(_)__d (_.)]2fd,rms =

£=I

(26)

where L = 4000/N is the number of update intervals for the

entire trajectory. These measures are obtained as a function

35 of P/No, where P denotes the received carrier power and N o is
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the one-sided power spectral density of the receiver bandpass
noise.

At lower range of (P/No) ratio, the receiver may lose
frequency lock in that the frequency errors at times may

5 exceed + one-half of the sampling frequency, fs or ± 250 Hz.

Since the error signals c(k) of Equation (11) are the same for

frequency errors of A Hz as for the case of A+nf s Hz for any

signed integer n, the estimator may make frequency estimation

errors of nf s Hz. This situation may be referred to as cycle

i0 slipping in the frequency estimator and is akin to the phe-

nomenon of cycle slipping (phase errors equal to multiples of

2_) in the phase-estimators. If there are one or mor'e cycles

in frequency, the computed value of fd,rms would beslipped

much larger compared to the case when no such cycle slips

15 occur and would be unacceptable. Thus, another important

parameter for the performance is the probability of maintain-

ing frequency lock throughout the trajectory denoted P(lock)

or the probability of losing the lock PL=1-P(lock). For the

purposes of estimating the probability by digital computer

20 simulations, 100 simulation runs are made for each value of

P/N o of interest and an estimate of PL is plotted vs the

carrier power to noise power spectral density ratio (CNR). The

sample rms values of Equation (26) are also averaged over all

those simulation runs for which the frequency lock is main-

25 tained. It may well be that for sequences that remain under

frequency lock there may be slipping of cycles in the phase

estimates. However, even under the presence of such cycle

slips, the computation made on the basis of Equation (25)

provides a good estimate of the pseudo-range as evidenced by

30 the simulations. One cycle slip only corresponds to an error

of about 0.2 meters in the pseudo-range estimate.

FIGs. 6-15 present the simulation results for the DLS

algorithm and the composite DLS-EKF algorithms pre_ented in

the previous sections. The results for the EKF algorithm

35 operating by itself are available in V. Vilnrotter, et al.,
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Sept. 1988, supra, for comparison. For the simulation results

a value of _ equal to 0.97 has been selected. The initial

covarlance matrix P(0) for the DLSalgorithm is selected to be
a diagonal matrix with its diagonal elements equal to 2xi03,

5 2xi07 and 2xi09 respectively, reflecting the possible uncer-

tainty about the parameters. Three different VCO update

intervals equal to 5, I0 and 20 sample times have been consid-
ered. The matrix Q of Equation (19) is also selected to be a

diagonal matrix for convenience, with its consecutive diagonal
i0 elements equal to 4xi03, 2xi06 and 108. The Q matrix repre-

sents possible variations in the input signal parameters over
an update interval and is arrived at from the consideration of

a-priori estimate of the maximumpossible value of the highest

order derivative (jerk) present in the input trajectory. For
15 the second stage EKFalgorithm, the initial covariance matrix

_(0) is selected to be also a diagonal matrix but with its
elements smaller in value than the corresponding elements of

the Q matrix, thus effectively resulting in a higher averaging

period and smaller estimation errors compared to the DLS

20 algorithm. The selected values of diagonal elements of _(0)
matrix are equal to 1.0, 103 and 106 respectively, in the

following simulations. From the simulations it appeared to be

advantageous in terms of numerical stability to periodically

reset the covariance matrix P of the DLS algorithm to its
25 initial value. Sucha period was selected to be 10 times the

VCOupdate interval.

FIGs. 6 and 7 present the simulation results for the

performance of DLSalgorithm while tracking the high dynamic

trajectory of FIG. 5 in the absence of any data modulation.

30 FIG. 6 plots the probability of losing the frequency lock PL

as a function of CNR for two different values of N equal to 10

and 20. As may be inferred from the figure, a value of PL of

less than 0.1 is obtained for CNRs above 23.1 dB which is

defined to be the threshold point of the algorithm. FIG. 6

35 also plots the average number of cycles slipped in the fre-
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quency estimation, denoted by Ncs. In defining such a cycle
slip, the entire frequency range is divided into disjoint

segments of fs Hz with the first segment extending from -fs/2
to fs/2 Hz. Whenever the frequency estimation error jumps

5 from one such segment to an adjacent one in either direction,

a cycle slip is said to occur. FIG. 7 plots the rms error in

the Doppler estimation as computed from Equation (26) and

averaged over all convergent sequences. For a CNRbetween25

and 30 dB-Hz, an rms error of 10-20 Hz is obtained that corre-

i0 sponds to a velocity tracking error of 2-4 m/s. FIG. 7 also

plots the average length Lcs of a slipped cycle in terms of
number of samples. The information about Ncs and _cs is
relevant in the case of multistage algorithm. FIGs. 8 and 9

present the results for the probability of losing lock PL and

15 the rms estimation error for the DLS algorithm in the presence

of data modulation for three different values of N equal to 5,

I0 and 20. As may be observed from the figures, the presence

of data modulation increases the threshold by only 0.25-0.5 dB

compared to the case of no data modulation. The increase in

20 rms frequency estimation error is about 10% due to data modu-

lation.

FIGs. 10 and 11 present the performance of the compos-

ite DLS-EKF algorithm in the absence of data modulation. Note

that corresponding to N--5, the threshold of the algorithm is

25 22.75 dB-Hz, which is slightly smaller than for the DLS algo-

rithm. However, the rms estimation errors are significantly

smaller than for the single-stage DLS algorithm. For the CNR

range of 25-30 dB-Hz, the rms error in the Doppler estimation

lies in the range of 4-15 Hz corresponding to the velocity

30 estimation error range of 0.8 to 3 m/s. The DLS-EKF algorithm

also provides the carrier phase estimate. The modulo-21_

phase-estimation error is plotted in FIG. 12 from which it is

clear that the algorithm is capable of coherent data aetection

with small probability of error if the CNR is higher than 25

35 dB-Hz. In fact, as shown in FIG. 15, the algorithm provides
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good estimates of pseudo-range (related to the absolute phase

error via Equation (25)) up to a CNRof about 23 dB at which
point the rms error is less than 4 m. The rms pseudo range

error is less than I m for CNRshigher than 25.5 dB-Hz.

5 The corresponding results for the perform_nce of

DLS-EKFalgorithm in the presence of data modulation are
presented in FIGs. 13-15. For this case, a minimum threshold

of 23.8 dB is obtained for N=IO which is about I dB higher

than for the case of no data modulation. In terms of rms

i0 estimation errors, for a CNR range of about 25-30 dB-Hz, the

rms frequency estimation error lies in a range of 8-20 Hz

corresponding to a velocity error of about 1.5 to 4 m/s. For

this case, as is apparent from FIG. 15, the pseudo-range

estimation errors are also higher and for a CNR range of 25-30

15 dB-Hz lie in a range of 0.3-6 m. Notice, however, that no

sharp threshold is observed in either the frequency or phase

estimation errors over the entire range of CNR between 22-30

dB-Hz considered in the simulations.

20 7. Comparison with Previous Techniques

For the case of no data modulation, the following

compares the performance of the proposed algorithm with some

of the techniques analyzed in V. Vilnrotter, et al., (1988)

cited above, in terms of their performance when tracking

25 exactly the same high dynamic trajectory. Compared to a more

computation-intensive maximum likelihood estimate, the DLS-EKF

algorithm requires about 0.25 dB smaller CNR than MLE in terms

of threshold. In terms of rms frequency estimation errors,

the MLE achieves an rms error between 8 Hz to 35 Hz at a CNR

30 of 23 dB-Hz depending upon the estimation delay ranging be-

tween 30-80 samples (higher delay provides smaller error). The

DLS-EKF algorithm provides an error of 35 Hz for a delay of 5

samples at a CNR of 23 dB-Hz. The MLE algorithm does not

provide any phase estimate.
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Compared to a single-stage EKF algorithm, the DLS-EKF

algorithm is about 1.5-2.0 dB better in terms of threshold

depending upon the value of exponential data weighting coeffi-

cient and the filter order used in the simulations of V.

5 Vilnrotter, et al., (1988) cited above. In terms of rms er-

rors, the performance is similar to that of third-order EKF

alone. Notice, however, that direct comparison with the

results of V. Vilnrotter, et al., may be somewhat misleading.

This is so because while the DLS-EKF algorithm includes all of

i0 the sequences in the computation of rms error above 25.5

dB-Hz, EKF rejects about 5% of the worst sequences, as the

probability of losing lock is about .05 at CNR of 25.5 dB-Hz.

For the case of cross product AFC loop analyzed by V.

Vilnrotter, et al., the threshold lies in a range of 25-28

15 dB-Hz depending upon the loop parameters. Thus, the DLS-EKF

algorithm is superior by 2-5 dB-Hz compared to AFC loop. AFC

loop provides a minimum rms frequency error of 25 Hz at a CNR

of 28 dB-Hz compared to a minimum of 5 Hz achieved for the

DLS-EKF algorithm for the same CNR. Notice that in an AFC

20 loop, the parameters achieving a relatively low estimation

error are different than those yielding low thresholds and

thus, a range of loop parameters must be considered for proper

comparison. In terms of rms phase error, the performance of

the DLS-EKF algorithm is similar to EKF alone. In terms of

25 computations, the DLS-EKF algorithm requires about the same

number of computations as for a fourth-order EKF but about

twice as many computations as a third-order EKF. The number of

computations are at least an order of magnitude smaller than

the MLE.

30 For the ease when the data modulation is present, the

following compares the performance of the DLS-EKF algorithm

with the MLE a/gorlthm of N.J. Hurd, et al., (_9_Y7) cited

above, where a somewhat less severe GPS trajectory ks ana-

lyzed. The results of W.J. Hurd, et al., show a marked

35 threshold of about 30 dB-Hz in terms of CNR compared to less
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than 24 dB-Hz for the proposed algorithm. Thus, the proposed

algorithm results in more than 6-dB reduction in terms of
threshold comparedto previous schemesof the literature.

In terms of the rms frequency estimation errors at a 30

5 dB-HzCNR, the MLEalgorithm provides an rms range r._te error

of 6 m/s comparedto an error of less than 2 m/s achieved by

DLS-EKFalgorithm. There is also very significant improvement
in terms of the rms position estimation error. At 30 dB-Hz an

rms error of I meter is reported by W.S. Hurd, et a]., cora-

l0 pared to about 0.25 meter obtained by the DLS-EKFalgorithm.

In terms of computations, both of the algorithms are compara-
ble. In terms of threshold on CNR,the DLSalgorithm is very

close to the composite DLS-EKFalgorithm. However, in terms

of rms frequency estimation errors, it has significantly

15 higher estimation errors. In those cases where highex_ estima-
tion errors are acceptable, one mayapply the DLSalgorithm by

itself, as it requires only one-half of the computations

required by the DLS-EKFalgorithm.

20 8. Conclusi ons
A novel multistage estimation schemehas been presented

for the efficient estimation of the phase and frequency of a

very high dynamic signal, which may possibly be phase modu-

lated by unknownbinary data and is received under relatively
25 low carrier-to-noise power ratio conditions. The proposed

schemeis of very general nature and has muchwider scope than

the applications described as examples. For a very important

application of dynamic GPStrajectories, the specific example
of a DLS-EKFscheme described has been specialized to have

30 just two stages. The first stage of the estimation schemeis
a least-squares algorithm operating upon the differential

signal model while the second stage is an extended Kalman
filter of third order.

For very high dyn_nic GPStrajectories, the proposed

35 algorithm has been shown to significantly outperform the
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previous algorithms reported in the literature in one or more

aspects, including threshold on CNR,estimation errors, avail-
ability of phase estimates and thus the estimate of pseudo-

range, computational complexity and flexibility. For the case

5 of no data modulation, the proposed scheme has a threshold

that is slightly lower than the more computation-intensive

implementation of MLEalgorithm. Whencompared to just the
EKFoperating by itself, the proposed DLS-EKFscheme provides

from about 1.5 to 2-dB reduction in threshold. In comparison
i0 to more conventional schemes, such as AFCloops, the perform-

ance is even better.

For the case when an unknowndata modulation i_3 pres-

ent, the algorithm provides an improvement of 6 dB in terms of

threshold on CNRin comparison to the MLEschemeof W.J. Hurd,

15 et al., (1987) specifically proposed for such applications.
In addition to phase and frequency estimates, the algorithm

can provide estimates of frequency derivative as wel[, al-

though not presented here. The schemebeing of a very general

nature, it may be possible to reduce the threshold even fur-

20 ther by using a higher dimension for the state vector related
to the higher number of terms in the Taylor series expansion

in arriving at the signal model for the first stage DLSalgo-

rithm. Further improvements are possible by the application

of more optimum sampling techniques as proposed by R. Kumar,

25 in "Differential Sampling for Fast Frequency Acquisition via

Adaptive Extended Least SQuares Algorithm," (1987) cited

above. The performance may also be improved both in terms of
the threshold and the rms estimation errors by increasing the
numberof states to three or more.
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MULTISTAGEESTIMATIONOFRECEIVED
CARRIERSIGNALPARAMETERSUNDERVERY

HIGHDYNAMICCONDITIONSOFTHERECEIVER

ABSTRACT OF THE DISCLOSURE

A multistage estimator is provided for the parameters

of a received carrier signal possibly phase-moduLated by

5 unknown data and experiencing very high Doppler, Doppler rate,

etc., as may arise, for example, in the case of Global Posi-

tioning Systems (GPS) where the signal parameters are directly

related to the position, velocity and jerk of the GPS ground-

based receiver. In a two-stage embodiment of the mor'_.• general

i0 multistage scheme, the first stage, selected to be a modified

least squares algorithm referred to as differential least

squares (DLS), operates as a coarse estimator resulting in

higher rms estimation errors but with a relatively small

probability of the frequency estimation error exceeding one-

15 half of the sampling frequency, provides relatively coarse

estimates of the frequency and its derivatives. The second

stage of the estimator, an extended Kalman filter (EKF),

operates on the error signal available from the first stage

refining the overall estimates of the phase along with a more

20 refined estimate of frequency as well and in the process also

reduces the number of cycle slips.
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